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1 Introduction

Among the first things one learns in algebra is to find the zeroes of polynomials over the real
numbers. One might pose a similar problem of finding zeroes of polynomials over Z/pZ, the set
of integers modulo a prime p. However, we will instead consider the somewhat easier problem
of determining when a polynomial has a zero. For linear congruences ax ≡ b (mod p) the
answer is simply that there exist a solution if and only if p does not divide a or p divides a
and b. For 2nd degree equations the situation becomes much more interesting. As we know
from the real numbers, we can complete the square to reduce the problem to finding for which
a ∈ Z/pZ there exists x ∈ Z/pZ such that x2 ≡ a (mod p). This is what we want to solve in
this essay and is the same question that many brilliant mathematicians such as Fermat, Euler,
Legendre and Gauss asked themselves and at the heart of the topic lies The Law of Quadratic
Reciprocity.

Due to the non-trivial nature of this topic, we have to assume familiarity with the fun-
damental results in number theory (for instance Fermat’s Little Theorem and The Chinese
Remainder Theorem) that one might learn about in any book on Elementary Number Theory,
such as Elementary Number Theory by Rosen.

1.1 Notation

We will throughout this essay use standard notation, with one exception. We will sometimes
use the denser notation Zp to denote Z/pZ. We write Z∗

p for the nonzero elements of Zp. Also,
when we are working in the integers and say prime, we are always referring to a positive prime.
In the section on Cubic Residues we will occasionally use the term rational prime when talking
about primes in Z.

1.2 Pedagogy

Mathematics is not a spectator sport. We therefore encourage mathematical inquiry and have
accordingly chosen to develop a lot of the theory through series of instructive exercises that we
hope will bring more clarity to the reader. Furthermore, presenting proofs of theorems strips
the reader of the satisfaction one gets from proving them oneself. Some of the topics later on
will be on a higher level and so the reader should not expect to understand everything at once.
The section on cubic residues in particular will require patience.
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2 Quadratic Residues

We are very comfortable solving quadratic equations over the real numbers, so a natural question
to ask is when the equation x2 = a has a solution in Zp. This endeavour is essentially trivial
for a fixed p since the problem is a finite one, but the question can be reversed: given a, for
which primes p is a a square?

Definition 2.1. Let p be a prime and a ∈ Z∗
p. Then a is called a quadratic residue modulo

p if there exists x ∈ Zp such that x2 = a in Zp. Otherwise a is called a quadratic non-residue
modulo p.

Example 2.1. It is easy to see that 5 is a quadratic residue modulo 11 since 42 ≡ 5 (mod 11),
while 2 is a quadratic non-residue modulo 3 (simply try to square all numbers in Z3).

The reader is now encouraged to engage in inquiry, that is to try small cases for p and make
conjectures.

Exercise 2.1. Try to conjecture when −1 is a quadratic residue by numerically investigating
p = 3, 5, 7, 11, 13 and 17. Can you make any attempts of proving your conjecture?

Some of the theory of quadratic residues will be developed through a series of exercises
below and the following theorem, which is easily proved, might be useful for the reader.

Theorem 2.1 (Division Algorithm for Polynomials). For any A(x), B(x) ∈ Zp[x], such that
B(x) ̸= 0, there exists Q(x), R(x) ∈ Zp[x] such that A(x) = B(x)Q(x) + R(x) and either
R(x) = 0 or deg(B) > deg(R).

Exercise 2.2. Prove that a polynomial over Zp of degree n has at most n zeroes. Hint: Use
the division algorithm for polynomials.

Exercise 2.3. List the perfect squares in Z5 and Z13. How many are there? Verify your
conjecture for the general case. Hint: a2 = (−a)2 and the previous exercise.

We saw in the last exercise that there are exactly p−1
2 quadratic residues and equally many

quadratic non-residues. We shall now apply it to a problem.

Example 2.2. Show that for every prime p there exist a, b ∈ Z such that p divides a2+ b2+1.

Proof. The condition holds if and only if a2 ≡ −b2 − 1 (mod p). Note that both sides, which
are independent of each other, can attain exactly p−1

2 +1 values, as a consequence of the result
obtained in the last exercise. Hence there must be some overlap so that a2 ≡ −b2 − 1 for some
integers a, b. (Why?)

Theorem 2.2. If a, b are both quadratic residues, then their product is a quadratic residue.
If one is a quadratic residue and the other a quadratic non-residue the product is a quadratic
non-residue. If both are quadratic non-residues the product is a quadratic residue.

Proof. Suppose that a, b ∈ Zp are quadratic residues modulo p. Then there exists x, y ∈ Zp

such that x2 = a and y2 = b in Zp, thus ab = (xy)2 is a quadratic residue in Zp.
If a is a quadratic residue and b is a quadratic nonresidue in Zp, suppose for the sake of

contradiction that ab is a quadratic residue. Then there exists x, y ∈ Z∗
p such that a = x2 and

ab = y2 in Zp. This implies that b = (x/y)2, a contradiction, hence ab must be a quadratic
nonresidue.
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Suppose a, b are both quadratic nonresidues in Zp. Then the map from Z∗
p to itself defined

by x 7→ a ·x is trivially a bijection. Since we know that there are exactly p−1
2 quadratic residues

by a previous exercise and that the product of a with a quadratic residue always results in a
quadratic nonresidue, we conclude that ab is a quadratic residue.

In this exercise, we find out that the property of being a quadratic residue behaves in some
sense like multiplication of −1 and 1, where −1 is identified with quadratic non-residues and 1
is identified with quadratic residues. This motivates the following definition:

Definition 2.2. The Legendre symbol is defined for a ∈ Z and a positive odd prime p as follows:

(
a

p

)
=


0 if p | a,
1 if a is a quadratic residue,

−1 if a is a quadratic non-residue.

The reader should, using Theorem 2.2, verify that this definition is natural. We have already
proved our first proposition about it, namely that for a, b ∈ Z not divisible by p, it is the case

that:
(

ab
p

)
=

(
a
p

)(
b
p

)
. Hence, by unique prime factorisation, it is sufficient to classify the

quadratic residues of all primes together with −1. Now more exercises follow.

Exercise 2.4. When is 5n2−2 a perfect square? Can you use the theory of quadratic residues
that we have developed so far?

Exercise 2.5. Suppose a2 ≡ −1 (mod p), where p is an odd prime. What can you say about
the order of a? What can you hence deduce about the residue of p modulo 4? What about the
converse of your result?

Note how polynomials played an important part in some of the earlier exercises. The
following is a crucial result that we advise the reader to try to prove for themselves, although
we will include a proof due to its significance:

Theorem 2.3 (Euler’s Criterion). Let p be an odd prime and a an integer not divisible by p.
Then (

a

p

)
≡ a

p−1
2 (mod p).

Proof. Consider the polynomial xp−1 − 1 in Zp[x]. By Fermat’s Little Theorem, all a ∈ Z∗
p are

zeroes of this polynomial. However

xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1).

This implies that either a
p−1
2 ≡ 1 or −1 (mod p). But if a ≡ b2 (mod p) for some integer b then

a
p−1
2 ≡ bp−1 ≡ 1 (mod p) and since there are exactly p−1

2 quadratic residues and x
p−1
2 − 1 has

degree p−1
2 , exactly the quadratic non-residues must have a

p−1
2 congruent to −1 by Exercise 2.2.

We see that this aligns with our definition of the Legendre symbol, and thus, we are done.

3 The Law of Quadratic Reciprocity

We are now ready to treat the first case in understanding quadratic residues completely, by
proving the so-called First Supplementary Law.

3



Exercise 3.1 (First Supplementary Law). Prove that −1 is a quadratic residue modulo an
odd prime p if and only if p ≡ 1 (mod 4). Hint: Use Euler’s Criterion.

We shall now state the main theorem which allows us to in principle determine whenever a
number is a quadratic residue, together with the Second Supplementary Law.

Theorem 3.1 (Second Supplementary Law). Let p be an odd prime. Then
(

2
p

)
= (−1)

p2−1
8 .

Theorem 3.2 (The Law of Quadratic Reciprocity). Let p, q be odd distinct primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Take a second to appreciate the beautiful theorem above, which eventually gave rise to
one of the most profound results in number theory: Artin’s Reciprocity Law, which is far too
difficult for this essay to even state. We will however give a couple of proofs of Quadratic
Reciprocity, although in a later section.

Let us now familiarise ourselves with calculations using the Legendre symbol by use of an
example and some exercises:

Example 3.1. We shall prove a criterion for when 3 is a quadratic residue modulo an odd
prime p. But notice that(

3

p

)
=

(p
3

)
· (−1)

p−1
2 · 3−1

2 =
(p
3

)
· (−1)

p−1
2 .

If p is congruent to 1 mod 3 then
(
p
3

)
= 1 and for 3 to be a quadratic residue modulo p we need

p ≡ 1 (mod 4). If p is congruent to 2 mod 3 and
(
p
3

)
= −1 instead, we get that p ≡ 3 (mod 4).

Hence, by the Chinese Remainder Theorem, 3 is a quadratic residue if and only if p ≡ 1 or 11
(mod 12).

Exercise 3.2. Determine, using the law of quadratic reciprocity, if 51 is a quadratic residue
modulo 101.

Exercise 3.3. Determine a criterion for when 5 is a quadratic residue modulo an odd prime p.

This is a good point to take a step back and see what our theory can accomplish so far. We
do this by proving the following theorem.

Theorem 3.3 (Pépin’s Test). The number p = 22
n

+1 is prime, where n is a positive integer,

if and only if 3
p−1
2 ≡ −1 (mod p).

Proof. If p = 22
n

+1 is prime we see that that p = (22)
2n−1

+1 ≡ 2 (mod 3) and p ≡ 1 (mod 4).

Hence
(

3
p

)
=

(
p
3

)
· (−1)

p−1
2 = −1 and so by Euler’s Criterion 3

p−1
2 ≡ −1 (mod p). If on the

other hand 3
p−1
2 ≡ −1 (mod p) we see that the order of 3 modulo p divides p − 1 = 22

n

but
not p−1

2 = 22
n−1 and is therefore equal to p − 1. Since p − 1 | ϕ(p) we get that ϕ(p) = p − 1

and so p is prime.

Notice that the primality test above is very useful since we can easily calculate 3
p−1
2 (mod p)

using repeated squaring. Unfortunately, the rate at which the numbers 22
n

+1 (so-called Fermat
numbers) grow makes it computationally hard to use anyways.
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Exercise 3.4. Prove that the sum of quadratic residues modulo a prime p is congruent to 0 if
and only if p ̸= 2 or 3.

Exercise 3.5. What can you say about the product of all quadratic residues modulo p? Hint:
Think about inverses and consider two cases.

Exercise 3.6. Figure out the condition for 3, 5, 7, 11 and 13 being quadratic residues modulo
p. What is the modular condition for p? Prove that for distinct odd primes p, q there exists an

odd α ∈ Z such that
(

q
p

)
= 1 ⇐⇒ p ≡ ±α2 (mod 4q). Hint: Consider different cases based

on residues modulo 4.

3.1 The Jacobi Symbol

A remark that we would like to make is that a troublesome part of calculating the Legendre
symbol is that we first need to perform a prime factorisation, which is computationally hard.
This motivates us to generalise the symbol into the Jacobi Symbol. Note that we use the same
notation as for the Legendre symbol.

Definition 3.1. The Jacobi Symbol is defined for a ∈ Z and a positive odd integer n =
p1p2 · · · pk where p1, . . . , pk are not necessarily distinct primes, as the product of the Legendre
Symbols of the primes: (a

n

)
:=

(
a

p1

)
· · ·

(
a

pk

)
.

It is a straightforward exercise, although worthwhile, to prove that for any a, b ∈ Z and
m,n positive odd integers

1.
(
ab
m

)
=

(
a
m

) (
b
m

)
,

2.
(

a
mn

)
=

(
a
m

) (
a
n

)
,

3.
(−1

n

)
= (−1)

n−1
2 ,

4.
(
2
n

)
= (−1)

p2−1
8 .

Even a corresponding reciprocity law can be easily deduced:

Exercise 3.7. Prove that for odd relatively prime positive integers m,n,(m
n

)( n

m

)
= (−1)

m−1
2

n−1
2 .

Exercise 3.8. Prove that if for an integer a and a positive odd integer n,
(
a
n

)
= −1, then

there does not exist an integer x such that x2 ≡ a (mod n).

Exercise 3.9. Prove or disprove that
(
a
n

)
= 1 implies the existence of an integer x such that

x2 ≡ a (mod n). Hint: It is false, but spend some time thinking about exactly when this fails
AND give an explicit counterexample.

Now we have developed a tool that allows us to calculate the Legendre symbol (since it
aligns with the Jacobi symbol when it is defined) using only the division algorithm by con-
stantly flipping the symbol using the reciprocity law, which for a computer is much easier than
factorising.

Exercise 3.10. Determine whether 153 is a quadratic residue modulo 191. Hint: 191 is a
prime.
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4 Applications to Mathematical Olympiads

In this section, we apply the theory that we have developed to some Olympiad-style problems.
The most generally applicable idea is to consider prime divisors which we exemplify below.

Example 4.1. Find all positive integers n such that 2n − 1 | 3n − 1.

Solution. We first observe that n = 1 is a solution. Otherwise, we know that there will be a
prime dividing 2n − 1. If n is even then 3 | 2n − 1 (prove this!) and naturally 3 does not divide
3n − 1. Now suppose that 2n − 1 | 3n − 1 where n > 1 is a positive odd integer and let p be
any prime (necessarily odd and not equal to 3) dividing 2n − 1 and therefore 3n − 1. Hence

(3
n+1
2 )2 ≡ 3 (mod p). But (

3

p

)
=

(p
3

)
· (−1)

p−1
2 .

For this to be equal to 1 we realise that either p ≡ 1 (mod 3) and p ≡ 1 (mod 4) or p ≡ 2
(mod 3) and p ≡ 3 (mod 4). This gives us that p ≡ ±1 (mod 12). Now we know there exists
k ∈ Z such that n = 2k + 1 and 42 ≡ 4 (mod 12), so

2n − 1 = 2 · 4k − 1 ≡ 7 (mod 12).

This contradicts the fact that all primes dividing 2n − 1 had residue ±1 modulo 12. The only
solution is therefore n = 1.

The following harder example demonstrates the same principle.

Example 4.2 (Iran TST 2013 (modified)). Prove that there does not exist an integer n such

that 3n+ 2 is not a power of 2 and a2+b2+c2

3(ab+bc+ca) = n, for integers a, b, c ∈ Z+.

Proof. Suppose for contradiction that a2+b2+c2

3(ab+bc+ca) = n ∈ Z+. Then by rewriting, we get that:

(a+ b+ c)2 = (3n+ 2)(ab+ bc+ ca).

Now we notice that there must exist an odd prime p congruent to 2 modulo 3 such that it divides
3n+2 with an odd exponent (make sure that you understand why). Hence since p must divide
the right hand side by an even exponent p | ab+bc+ca and consequently p | ab−b(a+b)−a(a+b)
which is equivalent to p | 4a2 + 4ab+ 4b2. We can write this as

p | (2a+ b)2 + 3b2,

which implies that −3 is a quadratic residue modulo p. However,(
−3

p

)
= (−1)

p−1
2 ·

(p
3

)
· (−1)

p−1
2 · 3−1

2 = (−1)p−1 ·
(
2

3

)
= −1,

which is a contradiction. Hence there exists no integer n such that 3n+2 is not a power of two

and a2+b2+c2

3(ab+bc+ca) = n.

The requirement that 3n+2 is not a power of two is rather unpleasant and even unnecessary,
but we have left out the details for the sake of brevity.

Below more exercises for the reader follow and we advise the reader to keep these ideas in
mind:
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1. Consider prime divisors.

2. Use modular reduction.

3. Complete the square.

4. Look at orders.

Exercise 4.1. Find all positive integers x, y such that y2 − 5 | x2 + 1.

Exercise 4.2. Solve for x ∈ Z and n an even positive integer: 10n + 89 = x2.

Exercise 4.3. Prove that if the last digit of x2 + xy + y2 is zero (in base 10) then the second
to last digit is zero as well.

Exercise 4.4. Prove that 2n + 1 has no prime factor of the form 8k − 1 where k ∈ Z.

Exercise 4.5. Prove that all numbers are cubic residues modulo a prime p if and only if p ≡ 2
(mod 3).

Exercise 4.6. Let p be an odd prime and A,B distinct non-empty subsets of {1, . . . , p − 1}
satisfying:

1. A ∪B = {1, . . . , p− 1},

2. if both a, b are in A or in B then ab ∈ A,

3. if a ∈ A and b ∈ B or vice versa then ab ∈ B.

Determine all possible sets A and B.

Exercise 4.7. Let a and b be positive integers such that the numbers 15a+16b and 16a− 15b
are both squares of positive integers. What is the least possible value that can be taken on by
the smaller of these two squares?

Exercise 4.8. An odd prime p is defined to be a Sophie Germain-prime if and only if 2p+ 1
is a prime as well. Prove that for a Sophie Germain-prime p ≡ 1 (mod 4), 2 is a primitive root
modulo 2p+ 1.

Exercise 4.9. For a positive integer a define x1 = a and xk+1 = 2xk + 1 for positive integers
k. Let yk = 2xk − 1 and determine the largest positive integer n such that y1, . . . , yn are all
primes for some positive integer a.

5 Proofs of Quadratic Reciprocity

The Quadratic Reciprocity Law was by Gauss called the Golden Theorem and he produced
eight proofs of it during his lifetime. This abundance of proofs most likely stemmed from the
feeling that none of them were sufficiently deep. Many of the more than 200 known proofs
may involve transparent and elegant arguments, but tend to use clever, seemingly God-given
tricks that do not explain the deep reason as to why one should expect such a theorem to be
true. For this however, one needs to introduce more heavy machinery in the form of algebraic
number theory, which, unfortunately, is beyond the scope of this essay. The theorem is in itself
quite unexpected, since the Chinese Remainder Theorem essentially tells us that life modulo
p is unrelated to life modulo q, whereas the plethora of reciprocity theorems stemming from
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Quadratic Reciprocity shows us that, in fact, they are. This should serve as an indication that
some clever combinatorial argument is not the underlying reason for the validity of the theorem.

Nevertheless, we want to give the reader two proofs of quadratic reciprocity, due to their
beauty. The first will be presented to the reader while the latter will be discovered by guided
inquiry through exercises.

5.1 Combinatorial proof

For this proof, we will start off by giving a combinatorial interpretation of the Legendre sym-
bol. Consider the map x 7→ ax + b modulo p, for a, b ∈ Zp, where a is a non-zero residue

modulo p. Then the sign of our permutation π of the elements mod p is the same as
(

a
p

)
, since

sgn(π) =
∏

0≤i<j<p
π(i)−π(j)

i−j ≡
∏

0≤i<j<p
ai+b−(aj+b)

i−j ≡
∏

0≤i<j<p
a(i−j)
i−j ≡ a

p(p−1)
2 (mod p).

From Fermat’s little theorem (ap)
p−1
2 ≡ a

p−1
2 (mod p), which according to Euler’s criterion is

the same as
(

a
p

)
.

We will now use this fact to formulate a proof of the law of quadratic reciprocity. Con-
sider the set of all pairs (i, j), wherein i ∈ Zp and j ∈ Zq, for two odd primes p and q.
We turn our attention to the following two possible permutations: πp : (i, j) 7→ (i, i+ pj) and

πq : (i, j) 7→ (qi+j, j), and note that they each have the signs sgn(πp) =
(

p
q

)
and sgn(πq) =

(
q
p

)
respectively, by the result above. We consider the permutation πpq = πpπ

−1
q mapping (j+qi, j)

to (i, i + pj), which has the sign sgn(πpq) = sgn(πp)sgn(π
−1
q ) =

(
p
q

)(
q
p

)
. Since each element

in Zpq has a unique representation as j + qi, where 0 ≤ i < p and 0 ≤ j < q, we can inter-
pret our set of pairs as containing elements in Zpq, where an element in Zpq corresponds to the
pair of its p-reduction and q-reduction. Thus the permutation πpq is the same as j+qi 7→ i+pj.

Since this permutation is the same as πpq, it has the same sign as well. However, this must be
the same as (−1)n, where n is the number of inversions. This corresponds to the number of
pairs (i, j) and (i′, j′) such that j + qi > j′ + qi′ and i+ pj < i′ + pj′. This is in turn the same

as i′ < i and j < j′ (can you tell why?), meaning in turn that n =
(
q
2

)(
p
2

)
= q(q−1)

2
p(p−1)

2 . Since

both p and q are odd, the sign of our permutation becomes (−1)
q(q−1)

2
p(p−1)

2 = (−1)
q−1
2

p−1
2 .

This in turn gives us that
(

p
q

)(
q
p

)
= (−1)

q−1
2

p−1
2 . We have thus proven the law of quadratic

reciprocity for odd primes p and q. A separate proof is required for the case wherein one of our
primes isn’t odd, which is presented in the second proof down below.

5.2 Eisenstein’s Geometric Proof

A variation of this proof was first discovered by Gauss, although Eisenstein’s form below is far
more elegant.

Exercise 5.1. Consider the set A = {2, 4, . . . , p−1} of even residues modulo a prime p. Let ra
be the remainder modulo p of qa for every a ∈ A where q is an odd prime. Show that (−1)rara
is a permutation of A up to multiples of p.

Exercise 5.2. Hence show, using an argument similar to the proof of Fermat’s Little Theorem,

that q
p−1
2 ≡ (−1)

∑
a∈A ra .
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Exercise 5.3. Show that (−1)
∑

a∈A ra = (−1)
∑

a∈A⌊ qa
p ⌋. Hint: by the Division Algorithm:∑

a∈A

qa = p
∑
a∈A

⌊
qa

p

⌋
+

∑
a∈A

ra.

Exercise 5.4. Prove the second supplementary theorem of the Law of Quadratic Reciprocity,

namely that
(

2
p

)
= (−1)

p2−1
8 using the last exercise. Hint: What values can

⌊
2a
p

⌋
take?

Remember that we have already earlier proved the First Supplementary Law of Quadratic

Reciprocity, namely that
(

−1
p

)
= (−1)

p−1
2 , so we are now ready to attack the Golden Theorem

using some geometry.

Exercise 5.5. Consider a lattice of points (x, y) ∈ Z2 where for two distinct odd primes p, q the
line segment connecting (0, 0) and (p, q) is drawn. Prove firstly that no lattice points between
these two points lie on the line segment.

Exercise 5.6. Prove that for an even x-coordinate p > a > p/2, the parity of the number of
lattice points with x-coordinate a under the line is the same as over the line.

Exercise 5.7. Hence prove that the parity of the number of lattice points with the odd x-
coordinate p− a under the line is the same as the parity of the number of lattice points under
the line with x-coordinate a using symmetry.

Exercise 5.8. Deduce, by counting of the number of lattice points with x-coordinate a under
the line, that

(−1)
∑

a∈A⌊ qa
p ⌋ = (−1)

∑ p−1
2

a=1 ⌊ qa
p ⌋.

Exercise 5.9. Convince yourself that
∑ p−1

2
a=1

⌊
qa
p

⌋
+
∑ q−1

2
a=1

⌊
pa
q

⌋
= p−1

2 · q−1
2 by counting lattice

points.

Exercise 5.10. Put everything together to prove the Law of Quadratic Reciprocity.

Make sure that you have studied the proof well enough to be able to reproduce it, not by
memorising it word by word, but rather by understanding the principles. Notice that the proof
contains only very simple ideas, which does not mean that it is easily discovered. Quite on the
contrary, it is a surprising proof strategy.
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6 Cubic Residues (Advanced Section)

To conclude this essay, we would like to give the reader a taste of how quadratic reciprocity
generalises. We will here study cubic residues, that is solutions to the equation x3 ≡ a (mod p),
though will unfortunately not include any proofs to avoid being too technical. For the interested
reader we recommend the excellent exposition in Chapter 1 Section 4 of Primes of the form
x2 + ny2 by Cox.

Remember that the Legendre symbol took the values of the second roots of unity in the
quadratic case. This might hint at us that the natural setting for cubic residues is actually the
set of Eisenstein Integers

Z[ω] := {a+ bω|a, b ∈ Z}

where ω = e
2πi
3 .

Reading Question. Look up the definition of a ring if you are not already familiar with it.
Verify that Z is one. Verify that Z[ω] is one.

One of our most important tools will henceforth be the norm of a number α = a+bω ∈ Z[ω],
defined as N(α) = αᾱ = a2 − ab+ b2.

Exercise. Show that the norm is multiplicative: N(αβ) = N(α)N(β). Hint: No messy algebra
is needed. Use the multiplicativity of the complex conjugate.

Reading Question. Look up the definitions of a Euclidean Domain, Principle Ideal Domain
and Unique Factorisation Domain. Prove that Z[ω] is one using a similar argument to the proof
of the same fact for Z.

The exercise above is optional. If the reader is completely unfamiliar with these notions
the reader will just have to trust us when we say that the properties of the Eisenstein integers
are very similar to those of the integers. We now give some important definitions, assuming
already the definitions of divisibility which are analogous to the rational case.

Definition 6.1. Let α, β be Eisenstein integers. Then

1. α is a unit if there exists γ ∈ Z[ω] such that αγ = 1,

2. α, β are associates if one is a unit multiple of the other,

3. α is a prime if it is a non-unit and for any x, y ∈ Z[ω], α | xy implies α | x or α | y,

4. α is irreducible if for any x, y ∈ Z[ω], α = xy implies that exactly one of x, y is a unit.

Exercise 6.1. Prove that the notion of irreducible and prime coincides in Z[ω] using an argu-
ment similar to in the integers. Give an example of a ring where this is not true.

Exercise 6.2. Show that α ∈ Z[ω] is a unit if and only if N(ω) = 1. Hence determine all units
in the ring.

Next, we want to determine what happens with rational primes when inserted into the
Eisenstein integers.

Exercise 6.3. Prove that if p is a rational prime, then

1. 3 ramifies, that is 3 = −ω2(1− ω)2, where 1− ω is a prime
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2. p ≡ 2 (mod 3) implies that p is an Eisenstein prime (We say that p is inert). Hint: The
norm’s multiplicativity is very useful.

3. p ≡ 1 (mod 3) implies that p = ππ̄ where π is a Gaussian prime (We say that p splits).
Hint: Show that p divides a number of the form x2 + 3 = (x−

√
3i)(x+

√
3i).

Exercise 6.4. Prove that if π is an Eisenstein prime, then for any Eisenstein integer a not
divisible by π

aN(π)−1 ≡ 1 (mod π).

Hint: The proof of Fermat’s little theorem generalises nicely.

Wishful thinking makes us want to have a corresponding Euler’s Criterion, which makes the
following definition natural.

Definition 6.2. For a prime π not dividing 3 and a ∈ Z[ω] not divisible by π we define the

cubic character
(
a
π

)
3
to be the unique cube root of unity which is congruent to a

N(π)−1
3 modulo

π.

Exercise 6.5. Justify the definition above by demonstrating firstly that a
N(π)−1

3 must be
congruent to 1, ω or ω2. Show that the condition that π does not divide 3 was necessary for
the cube roots of unity to be distinct.

Exercise 6.6. Prove the multiplicativity of the cubic character.

Exercise 6.7. Prove that for a prime π not dividing 3 and Eisenstein integer a not divisible
by π:

(
a
π

)
3
= 1 if and only if x3 ≡ a (mod π) has a solution. Hint: This is very similar to the

quadratic case.

The final definition that we need is that a prime π not dividing 3 is called primary if and
only if π ≡ 2 (mod 3).

Exercise 6.8. Show that a given prime not dividing 3 has exactly one associate which is
primary. This means that ”primary” is the equivalent of ”positive” in the integers.

We are now ready to state the main theorem:

Theorem 6.1 (The Law of Cubic Reciprocity). Let π1 and π2 be primary primes in Z[ω] such
that N(π1) ̸= N(π2). Then (

π1

π2

)
3

=

(
π2

π1

)
3

.

As for Quadratic Reciprocity there are supplementary laws, but we will not state them
here. We will not give a proof of this theorem either, though one can be found in A Classical
Introduction to Modern Number Theory by Ireland and Rosen (a proof using so-called Gauss
sums).

We shall now shortly touch on when a is a cubic residue modulo a prime p in Z. The reader
should already have proved in Exercise 4.5 that all numbers relatively prime to p are cubic
residues if p ≡ 2 (mod 3). If not, we know that p splits in Z[ω] and so there exists a prime π
such that N(π) = p. Here we can not avoid being a bit technical, so the reader might want to
look up some of the terminology that we use.

Let t be a number whose square is −3 modulo p (which we know exists due to quadratic
reciprocity). Then consider the map ϕ : Z[ω]/πZ[ω] → Z/pZ defined by

ϕ(a+ bω) = a+ b · t− 1

2
.
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This can be easily verified to be an homomorphism and since all field homomorphisms are
injective and since both fields have the same cardinality (N(π) = p), we conclude that this is
indeed a field isomorphism. Furthermore, we see that ϕ maps a + 0ω to a, a ∈ Z. Therefore
a is a cubic residue modulo p in Z if and only if

(
a
π

)
3
= 1 which can be determined using the

cubic reciprocity theorem in Z[ω].
We hope that this method of generalisation, the starting point for algebraic number theory,

has been insightful, even though some of the material might be a bit too advanced for the
reader at this point.

7 Further Reading

As has already been emphasised, quadratic reciprocity is an incredibly beautiful result and is
probably the most important and nontrivial theorem of Elementary Number Theory. There
are also many generalisations, most notably Artin’s Reciprocity Theorem which is too difficult
to state here but is the starting point for the ambitious Langlands program. The interested
reader should consult the following literature.

1. Elementary Number Theory by Rosen - This book introduces number theoretic theo-
rems and notions such as order, the Chinese Remainder Theorem and so on, which are
prerequisites for this essay.

2. Abstract Algebra by Dummit and Foote - This will be preliminaries for some of our other
recommendations.

3. Modern Olympiad Number theory by Aditya Khurmi - A book primarily aimed at Olympiad
competitors.

4. The Quadratic Reciprocity Law by Lemmermeyer - Contains a huge list of proofs of
quadratic reciprocity together with detailed descriptions of some proofs and some histor-
ical remarks.

5. Primes of the form x2 + ny2 by David A. Cox - The author develops class field theory,
beginning with a discussion of quadratic, cubic and biquadratic reciprocity.

6. A Classical Introduction to Modern Number Theory by Ireland and Rosen - An excellent
introduction to primarily algebraic number theory. Especially chapters 5-9 might be of
interest considering the topic of this essay. Nonetheless, there is a lot of other interesting
number theory in it as well.
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