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1 Introduction

In mathematics, we often encounter expressions that vary or are unwieldy. For these, inequalities
are important tools for consolidating dependencies and reducing complexity while preserving
key information. This document aims to explore elementary inequalities resulting from the
particulars of the shape of convex functions. The goal is to educate the reader in the application
of Karamata’s inequality and its special case Jensen’s inequality in Olympiad algebra.

1.1 Convex functions

To see the defining property of convex functions we observe the graph of a function. A function
is said to be convex if for any two points on its graph, the line segment connecting those points
is above the graph of the function. For example, the function f(x) = x2 +1 is convex, while the
function g(x) = x3 − x is not.

x

y

A

B

g(x)

C

D

f(x)

Figure 1: The function f(x) = x2 + 1 is convex, but the function g(x) = x3 − x is not as the
segment between A and B does not lie above the graph of the function.

This is often formulated as an inequality between the y-coordinates of the segment and of the
graph y = f(x) by parameterizing all points on the segment.

Definition 1.1. A function f : R → R is convex on an interval I if

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ∀a, b ∈ I, a ̸= b, λ ∈ (0, 1) .

Replacing the ≤ sign with < we obtain the definition of a strictly convex function. Concave
functions f are functions for which −f is convex, which in practice can be thought of as convex
functions with all inequalities reversed. Convex functions over the real numbers are necessarily
continuous, but not necessarily differentiable.

1.2 Proving convexity

Proving convexity for some functions such as e
1√
x from the inequality definition is difficult. We

therefore present some alternative tools for proving convexity.

Lemma 1.1. A function f is convex if and only if the symmetric function R(x, y) = f(x)−f(y)
x−y

is non-decreasing in x for every fixed y.

Lemma 1.2. A differentiable function f is convex if and only if f ′ is non-decreasing. If the
function is twice differentiable, this is in turn equivalent to f ′′ ≥ 0.
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Lemma 1.3. If the functions g and h are convex and g is non-decreasing, the function f = g ◦h
is also convex.

When proving convexity for a function in Olympiad problems, using Lemma 1.2 is the most
common. In the following example, we illustrate the use of all three methods.

Example 1. Show that the functions 1√
x
, ex, and e

1√
x are convex for x > 0.

Solution. Fix y and consider

R(x, y) =

1√
x
− 1√

y

x− y
=

√
y −

√
x

√
xy

1

(
√
x−√

y)(
√
x+

√
y)

=
−1

√
xy(

√
x+

√
y)

which is increasing in x as
√
xy(

√
x +

√
y) is increasing in x. Hence 1√

x
is convex for x > 0 by

Lemma 1.1. Since the second derivative of ex is ex which is positive for all real x, the function
ex is convex for all real x by Lemma 1.2. Finally, since g(x) = ex is convex and non-decreasing

and h(x) = 1√
x
is convex, we get by Lemma 1.3 that f(x) = g ◦ h = e

1√
x is convex.

Exercise 1. Prove that |x| is convex.

Exercise 2. Prove that lnx is concave.

Exercise 3. Prove that sin (cosx) is concave on [−π
2 ,

π
2 ].

Exercise 4. Prove that ex
4−x3+x2−x+1 is convex.

1.3 Majorization

To state Karamata’s inequality, we need to introduce the concept of majorization for two se-
quences of numbers. Majorization is a part of not only Karamata’s inequality, but also other
inequalities such as Muirhead’s inequality.

Definition 1.2. Given two sequences a1, . . . , an and b1, . . . , bn such that a1 ≥ · · · ≥ an and
b1 ≥ · · · ≥ bn, we say that the sequence (ai) weakly majorizes the sequence (bi) if for every

1 ≤ k ≤ n,
∑k

i=1 ai ≥
∑k

i=1 bi. If additionally we have
∑n

i=1 ai =
∑n

i=1 bi, then we say that (ai)
majorizes (bi) and write (ai) ≻ (bi).

Example 2. The sequence (3, 2, 1) majorizes the sequence (2, 2, 2) as 3 ≥ 2, 3 + 2 ≥ 2 + 2 and
3 + 2 + 1 = 2 + 2 + 2.

Exercise 5. Given two sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn) such that (ai) ≻ (bi), what
can be said about a1 and b1? an and bn? ai and bi for 2 ≤ i ≤ n− 1?

Exercise 6. If f and g are two functions defined on an interval I such that f(x) ≥ g(x) for
every x ∈ I and a1, . . . , an ∈ I, prove that the sequence (f(ai)) weakly majorizes (g(ai)).

1.4 Karamata’s inequality

With the concepts of convex functions and majorization introduced, we can state and prove
Karamata’s inequality.

Theorem 1.1 (Karamata’s inequality). Let f be a function that is convex on some interval I
of the real line. If a1, . . . , an and b1, . . . , bn are numbers in I such that (ai) ≻ (bi), then

f(a1) + · · ·+ f(an) ≥ f(b1) + · · ·+ f(bn).

Proof. From the majorization we have that a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Let

ci =
f(ai)−f(bi)

ai−bi
for i = 1, . . . , n. From Lemma 1.1, the quantity R(x, y) = f(x)−f(y)

x−y is increasing
in x and in y, hence

ci+1 = R(ai+1, bi+1) ≤ R(ai, bi+1) ≤ R(ai, bi) = ci
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Further let A0 = B0 = 0 and Ai = a1 + · · · + ai and Bi = b1 + · · · + bi for i = 1, . . . , n, then
since (ai) majorizes (bi), Ai ≥ Bi for every i. Now note

n∑
i=1

f(ai)− f(bi) =

n∑
i=1

f(ai)− f(bi)

ai − bi
(ai − bi) =

n∑
i=1

ci(ai − bi) =

n∑
i=1

ci(Ai −Ai−1 −Bi +Bi−1)

Breaking up the summation and using A0 = B0 and An = Bn

n∑
i=1

f(ai)− f(bi) =

n∑
i=1

ci(Ai −Bi)−
n∑

i=1

ci(Ai−1 −Bi−1)

= cn(An −Bn) +

n−1∑
i=1

(ci − ci+1)(Ai −Bi)− c1(A0 −B0)

=

n−1∑
i=1

(ci − ci+1)(Ai −Bi) ≥ 0 (1)

Where we used that ci ≥ ci+1 and Ai ≥ Bi in the last step. Hence we conclude that
∑n

i=1 f(ai) ≥∑n
i=1 f(bi).

Looking at the sum in (1), equality in Karamata’s inequality is obtained if, for every i, Ai = Bi

or ci = ci+1, the latter of which is equivalent to f being linear on [min(ai+1, bi+1),max(ai, bi)].
Note that if f is strictly convex, it is impossible for f to be linear on some interval, so in that
case, equality occurs if Ai = Bi for every i, which is equivalent to ai = bi for every i.

Given a1 ≥ · · · ≥ an with arithmetic mean m = a1+···+an

n , the sequence (a1, . . . , an) majorizes
the sequence (m, . . . ,m). This yields a common special case of Karamata’s inequality called
Jensen’s inequality.

Theorem 1.2 (Jensen’s inequality). For a function f that is convex on an interval I of the real
line, the inequality

f(a1) + · · ·+ f(an)

n
≥ f

(
a1 + · · ·+ an

n

)
holds for all a1, . . . , an ∈ I.

Jensen’s inequality has a generalization in which weights are assigned to every term. We present
the following geometric proof, although proofs using induction or Theorem 1.4 are possible.

Theorem 1.3 (Weighted Jensen’s inequality). Let f be a function convex in an interval I.
Given weights w1, w2, . . . , wn ∈ (0, 1) such that

∑n
i=1 wi = 1, the inequality

w1f(a1) + w2f(a2) + · · ·+ wnf(an) ≥ f (w1a1 + w2a2 + · · ·+ wnan)

holds for all a1, a2, . . . , an ∈ I.

Proof. We rephrase the inequality as the following lemma.

Lemma 1.4. Let f : R → R be a convex function and let S be a set of points of the form
(x, f(x)). For any point (p, q) inside the convex hull of S we have that f(p) ≤ q.

Proof. As (p, q) is inside the convex hull of S, there must exist 3 points in S that form a triangle
containing (p, q). Consider the side of this triangle directly below (p, q), which is a segment
between two points (a, f(a), (b, f(b)) ∈ S with a ≤ p ≤ b. By the geometric definition of a
convex function, when x ∈ [a, b], the graph y = f(x) is below the segment between points
(a, f(a)) and (b, f(b)), which is below the point (p, q). Hence (p, q) is above the graph y = f(x),
which means that f(p) ≥ q.
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Figure 2: A proof without words of Jensen’s inequality by LazarIlic0.

Noting that any center of mass of the points P = {(x, f(x)) | x ∈ {a1, . . . , an}} must lie inside
their convex hull, we give every point (ai, f(ai)) a point mass of wi. By Lemma 1.4 we have
that f(w1a1 + w2a2 + . . .+ wnan) ≤ w1f(a1) + w2f(a2) + . . .+ wnf(an).

Similarly, Karamata’s inequality also has a weighted version due L. Fuchs, although this inequal-
ity rarely comes up in Olympiad algebra.

Theorem 1.4 (Weighted Karamata’s inequality). Let f be function convex on an interval I.
Let w1, . . . , wn be real numbers and let a1 ≥ . . . ≥ an and b1 ≥ . . . ≥ bn be two sequences with
numbers belonging to I such that (aiwi) ≻ (biwi). Then

w1f(a1) + · · ·+ wnf(an) ≥ w1f(b1) + · · ·+ wnf(bn)

Proof. The proof is mostly the same as the proof of the unweighted variant. Let ci =
f(ai)−f(bi)

ai−bi
,

Ai = w1a1 + · · ·+ wiai and Bi = w1b1 + · · ·+ wibi. Let A0 = B0 = 0 and notice that

n∑
i=1

wif(ai)− wif(bi) =

n∑
i=1

ci(wiai − wibi) =

n∑
i=1

ci(Ai −Ai−1 −Bi +Bi−1)

which is non-negative as ci+1 ≤ ci and Ai ≥ Bi. The conclusion follows with the same equality
cases as the unweighted variant.

Exercise 7. Given real numbers a1 ≥ · · · ≥ an with arithmetic mean m = a1+···+an

n , verify that
(a1, . . . , an) ≻ (m, . . . ,m) and conclude Jensen’s inequality from Karamata’s inequality.

2 Applying Karamata’s inequality

Two things are needed to apply Karamata’s inequality: a convex function, and two sequences,
one majorizing the other. Here, we present common ideas used for finding these two things and
proving inequalities with Karamata.

Example 3. In an acute triangle with angles α, β, γ, prove that

2 ≤ sinα+ sinβ + sin γ ≤ 3
√
3

2

Proof. WLOG assume that π
2 > α ≥ β ≥ γ > 0 as the triangle is acute. Note that α+β+γ = π is

constant, hence f(x) = sinx is most likely a good choice of a function. As f ′′(x) = − sinx ≤ 0 we
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have that f is concave. From (π2 ,
π
2 , 0) ≻ (α, β, γ) ≻ (π3 ,

π
3 ,

π
3 ) we obtain the desired inequalities,

sin
π

2
+ sin

π

2
+ sin 0 = 2 ≤ sinα+ sinβ + sin γ ≤ 3

√
3

2
= sin

π

3
+ sin

π

3
+ sin

π

3

keeping in mind that the inequalities are flipped due to the concavity of f .

Finding a set of variables whose sum is constant is often the first step towards a solution using
Karamata’s or Jensen’s inequality.

Exercise 8. In an acute triangle with angles α, β, γ, prove that

1 ≤ cosα+ cosβ + cos γ ≤ 3

2

Exercise 9 (Modified version of SMT Final 2017). Let a, b, c be side-lengths in an arbitrary
triangle with area A. Find the largest constant K such that

K ≤ ab+ bc+ ca

A

2.1 Using logarithms

Assume that we wish to prove an inequality that can be written in the form

f(a1)f(a2) · · · f(an) ≥ f(b1)f(b2) · · · f(bn). (2)

We cannot use Karamata directly on f and the sequences (ai), (bi) since the values are being
multiplied instead of summed. However, using some properties of the logarithm, the inequality
can be transformed into a form where Karamata or Jensen can be used. Recall the following
properties for x, y > 0:

1. x ≥ y ⇐⇒ lnx ≥ ln y.

2. lnx · y = lnx+ ln y.

3. For any a ∈ R, lnxa = a · lnx.

4. The derivative of lnx is 1
x .

The first three properties hold for logarithms with any base, but the last property makes using
the natural logarithm the most convenient. Going back to (2), it is equivalent to showing

ln(f(a1)f(a2) · · · f(an)) ≥ ln(f(b1)f(b2) · · · f(bn))

by the first property. By the second property, we can write this inequality as

ln f(a1) + ln f(a2) + · · ·+ ln f(an) ≥ ln f(b1) + ln f(b2) + · · ·+ ln f(bn)

and letting g(x) = ln f(x), the inequality we wish to prove writes

g(a1) + g(a2) + · · ·+ g(an) ≥ g(b1) + g(b2) + · · ·+ g(bn).

The inequality is now of the correct form for using Karamata, and verifying the conditions
required for using the theorem, the inequality follows. We illustrate this technique further with
a concrete example.

Example 4 (Tip pay on AOPS1, modified). The sum of the positive numbers x1, x2, . . . , xn is
equal to 1

2 . Prove that

1− x1

1 + x1
· 1− x2

1 + x2
· · · 1− xn

1 + xn
≥

(
2n− 1

2n+ 1

)n

.

1https://artofproblemsolving.com/community/c6h2722951p23691396
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Solution. The function ln 1−x
1+x has second derivative − 4x

(x2−1)2 < 0 for x > 0, so it is concave.

Thus, by Jensen we have

ln
1− x1

1 + x1
+ ln

1− x2

1 + x2
+ · · ·+ ln

1− xn

1 + xn
≥ n ln

1− x1+···+xn

n

1 + x1+···+xn

n

= n ln
1− 1

2n

1 + 1
2n

= ln

((
2n− 1

2n+ 1

)n)
so exponentiating both sides yields the desired inequality.2

Defining new variables after applying logarithms can also be of use for finding a sequence that
majorizes another, as seen in the following example.

Example 5 (IMOmath). Let a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn be sequences of
positive real numbers such that a1 · · · ak ≥ b1 · · · bk for k = 1, . . . , n− 1 and a1 · · · an = b1 · · · bn.
Prove that

a1 + a2 + . . .+ an ≥ b1 + b2 + . . .+ bn.

Solution. Perform the change of variables xi = ln ai and yi = ln bi. Taking logarithms on both
sides of the given inequalities gives

x1 + . . .+ xk ≥ y1 + . . .+ yk

for all k with equality for k = n, so (xi) ≻ (yi). Now the inequality we wish to prove is

ex1 + ex2 + · · ·+ exn ≥ ey1 + ey2 + · · ·+ eyn

but this follows from Karamata with f(x) = ex, a convex function.

Exercise 10 (AM-GM-inequality). Let x1, x2, . . . , xn be positive real numbers. Prove that

x1 + x2 + · · ·+ xn

n
≥ n

√
x1x2 · · ·xn.

2.2 Proving majorization

Sometimes, finding the two sequences such that one majorizes the other is not obvious or may
require additional work. The terms of the sequences may include more than one of the variables,
as long as one can prove majorization. We illustrate some key ideas in the following examples.

Example 6 (APMO 1996). Prove that

√
a+ b− c+

√
b+ c− a+

√
c+ a− b ≤

√
a+

√
b+

√
c

for a, b, c being the sides of a triangle.

Solution. The inequality is symmetric in all variables, so assume without loss of generality that
a ≥ b ≥ c. The function f(x) =

√
x is concave for x ≥ 0, so the inequality is proven by Karamata

if we can show that (a+ b− c, c+ a− b, b+ c− a) ≻ (a, b, c). Note first that since a ≥ b ≥ c, we
have

a+ b− c ≥ c+ a− b ≥ b+ c− a

so we know the orderings of the two sequences. All that remains for majorization is proving:

a+ b− c ≥ a

(a+ b− c) + (c+ a− b) ≥ a+ b

(b+ c− a) + (c+ a− b) + (a+ b− c) = a+ b+ c

but these inequalities are clear.

2The left hand side of the original problem was just 1
3
, but in our case it is possible to prove f(n) = ( 2n−1

2n+1
)n ≥

1
3
for all n ≥ 1 by showing that f is increasing. In fact we have the limit limn→∞ f(n) = 1

e
≈ 0.368.

7



The next example has a similar structure, but requires slightly more work.

Example 7 (Ngankaka on AOPS3). Given a, b, c > 0, prove that

2
√
a2 + b2 + c2 +

√
ab+ bc+ ac ≥

√
a2 + ab+ b2 +

√
b2 + bc+ c2 +

√
c2 + ca+ a2.

Solution. Again the inequality is symmetric, so we may assume that a ≥ b ≥ c. The inequality
can be written as

f(a2+b2+c2)+f(a2+b2+c2)+f(ab+bc+ac) ≥ f(a2+ab+b2)+f(b2+bc+c2)+f(c2+ca+a2)

where f(x) =
√
x, a concave function for x > 0, so if we can prove that,

(a2 + ab+ b2, b2 + bc+ c2, c2 + ca+ a2) ≻ (a2 + b2 + c2, a2 + b2 + c2, ab+ bc+ ca)

we are done by Karamata. Since we assumed a ≥ b ≥ c, the first sequence is ordered as

a2 + ab+ b2 ≥ c2 + ca+ a2 ≥ b2 + bc+ c2.

For the second sequence notice that (a2 + b2)/2 ≥ ab by AM-GM, which gives the ordering

a2 + b2 + c2 ≥ a2 + b2 + c2 ≥ ab+ bc+ ca.

This means that we have to prove:

a2 + ab+ b2 ≥ a2 + b2 + c2

(a2 + ab+ b2) + (c2 + ca+ a2) ≥ 2(a2 + b2 + c2)

(a2 + ab+ b2) + (c2 + ca+ a2) + (b2 + bc+ c2) = 2(a2 + b2 + c2) + ab+ bc+ ca

but the two inequalities follow from ab ≥ b2 ≥ c2 and ca ≥ c2, and the last equality is clear.

Exercise 11. Prove for a, b, c > 0 the inequality

1

a+ b
+

1

b+ c
+

1

c+ a
≤ 1

2a
+

1

2b
+

1

2c
.

Exercise 12. Prove that the inequality

cos(2x1 − x2) + cos(2x2 − x3) + · · ·+ cos(2xn − x1) ≤ cos(x1) + cos(x2) + · · ·+ cos(xn)

holds for arbitrary numbers x1, x2, . . . , xn in the interval [−π/6, π/6].

2.3 Finding a function

Further algebraic manipulation is often needed in order to rewrite expressions into forms to
which we can apply Karamata. To that end we present some key ideas including; introducing
dependence on a single quantity, homogeneity and simplifying substitutions. In Olympiad alge-
bra, homogeneity is when all expressions have equal degree so that a scaling of all variables by
a constant yields an equivalent equation.

Example 8 (IMO 2009 Shortlist A2). Let a, b, c be positive real numbers such that 1
a +

1
b +

1
c =

a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

3https://artofproblemsolving.com/community/c6h2629634p22734355
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Solution. There is no obvious function f and pair of sequences that we can choose here, but by
manipulating the inequality, this will appear. First we homogenize the inequality by multiplying
the the right hand side by ( 1a + 1

b + 1
c )/(a+ b+ c) = 1 to obtain

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤

3( 1a + 1
b + 1

c )

16(a+ b+ c)
.

As the inequality is homogeneous, a scaling of all variables does not change the value of either
side. We may therefore impose a new condition on the variables, so let a + b + c = 3. The
inequality becomes

1

(a+ 3)2
+

1

(b+ 3)2
+

1

(c+ 3)2
≤

( 1a + 1
b + 1

c )

16

which can now be written as

f(a) + f(b) + f(c) ≥ 0 = 3 · f(1) = 3 · f
(
a+ b+ c

3

)
where f(x) = 1

16x − 1
(x+3)2 , and this is exactly the form of Jensen’s inequality. All that remains

is checking that this function is convex on the interval (0, 3). We have f ′′(x) = 1
8x3 − 6

(x+3)4

which is decreasing on (0, 3), and f ′′(3) = 0 so f is convex and the desired inequality follows.

Example 9. If a, b, c are positive real numbers, prove that

a

(b+ c)2
+

b

(c+ a)2
+

c

(a+ b)2
≥ 9

4(a+ b+ c)
.

Proof. Introduce the quantity S = a+ b+ c and rewrite all summands to be univariate.

a

(S − a)2
+

b

(S − b)2
+

c

(S − c)2
≥ 9

4S

Now consider f(x) = x
(S−x)2 and notice that f ′′(x) = 4S+2x

(S−x)4 > 0 as well as f(S/3) = S/3
(S−S/3)2 =

9S
3·4S2 = 3

4S . The inequality becomes f(a) + f(b) + f(c) ≥ 3f(S/3) which follows by Jensen.

Exercise 13 (Nesbitt’s inequality). Prove for positive real numbers a, b, c the inequality

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

Exercise 14 (IMOmath4). If x, y, z are positive real numbers such that x+ y + z = xyz prove
that

1

1 + xy
+

1

1 + yz
+

1

1 + zx
≤ 3

4
.

3 Further example problems

This section contains further examples of the techniques presented as well as some smaller tricks.

Example 10 (Korrespondenskurs 22/23). Let x0, x1, . . . , xn be positive real numbers such that
x0 > x1 > x2 > · · · > xn. Prove that

(x0 − x1)(x1 − x2) · · · (xn−1 − xn)

(x0 + x1)(x1 + x2) · · · (xn−1 + xn)
≤

(
n
√
x0 − n

√
xn

n
√
x0 + n

√
xn

)n

.

4Problem author Zuming Feng
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Solution. As lnx is an increasing function, applying logarithms to both sides reduces the problem
to showing

n∑
i=1

ln
xi−1 − xi

xi−1 + xi
≤ n ln

n
√
x0 − n

√
xn

n
√
x0 + n

√
xn

.

Further let ai = ln xi

xi−1
, letting us rewrite the left hand summands in a single variable

n∑
i=1

ln
1− eai

1 + eai
≤ n ln

1− exp 1
n

∑n
i=i ai

1 + exp 1
n

∑n
i=i ai

noting that ln
n
√
xn

n
√
x0

= 1
n

∑n
i=i ai for the right hand side. The inequality is now on the form of

Jensen’s inequality. All that remains is to prove the concavity of f(x) = ln 1−ex

1+ex ,

f ′′(x) =
−ex

(1 + ex)2
+

−ex

(1− ex)2
< 0

defined for x < 0 while verifying that ai < ln 1 = 0 as xi < xi−1.

A powerful observation for Olympiad use is that if a continuous function is not convex, then there
exists some interval on which it is concave. On this interval we have that Jensen’s inequality
does not hold. Hence we could be sure that the function f in Example 10 would be concave and
that we had a complete proof before verifying its concavity, since we had reduced the inequality
to the form of Jensen’s inequality.

Example 11 (Weighted AM-GM). Let x1, x2, . . . , xn and w1, w2, . . . , wn be non-negative real
numbers such that

∑n
i=1 wi = 1. Prove that

w1x1 + w2x2 + . . .+ wnxn ≥ xw1
1 xw2

2 · · ·xwn
n

Solution. If xi = 0 and wi > 0, then the right hand side is non-negative and the left hand side
is 0. If xi = 0 = wi, then removing both yields an equivalent inequality. Hence we can assume
that xi > 0 for all i. Introduce the substitution ai = lnxi and rewrite the inequality as

w1e
a1 + w2e

a2 + . . .+ wne
an ≥ exp (w1a1 + w2a2 + . . .+ wnan)

which follows by weighted Jensen on f(x) = ex, which is convex as f ′′(x) = ex > 0.

Example 12 (Popoviciu’s inequality). Let f be a function convex on an interval I ⊆ R and let
x, y, z ∈ I be three real numbers. Show that

f(x) + f(y) + f(z)

3
+ f

(
x+ y + z

3

)
≥ 2

3

[
f

(
x+ y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]
.

Solution. The inequality is symmetric in all variables, so without loss of generality x ≥ y ≥ z,
which implies the ordering x+y

2 ≥ z+x
2 ≥ y+z

2 . As flipping a function over the y-axis preserves

convexity we can assume that y ≥ x+y+z
3 . Multiplying the inequality by 3 yields that the

inequality is implied by Karamata if(
x, y,

x+ y + z

3
,
x+ y + z

3
,
x+ y + z

3
, z

)
≻

(
x+ y

2
,
x+ y

2
,
x+ z

2
,
x+ z

2
,
y + z

2
,
y + z

2

)
As y ≥ x+y+z

3 we have that 2y ≥ x + z. The majorization is true as x ≥ x+y
2 , x + y ≥ x + y,

x+y+z
3 ≥ x+(x+z)/2+z

3 = x+z
2 ≥ x+y

2 and x+ y + z + 3x+y+z
3 = 2(x+ y + z).

Notice how we utilized the symmetries of the question to reduce the number of possible cases
for majorization down to a single case.
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4 Problems

Problem 1. Let a1, a2, . . . , an be positive real numbers and let p ≥ 1. Prove that

(a1 + a2 + · · ·+ an)
p ≤ np−1(ap1 + ap2 + · · ·+ apn).

Problem 2. Let x1, x2, . . . , xn be positive real numbers such that
∏n

i=1 xi = 1. Prove that

x1 + x2 + . . .+ xn ≥
√
x1 +

√
x2 + . . .+

√
xn.

Problem 3 (Korrespondenskurs 04/05). The numbers a1, a2, . . . , an are positive and such that
a1 + a2 + · · ·+ an = 1. Show that

a1

1 + a1
√
2
+

a2

1 + a2
√
2
+ · · ·+ an

1 + an
√
2
≤ n

n+
√
2
.

Problem 4 (AM-HM inequality). Let x1, x2, . . . , xn be positive real numbers. Prove that

x1 + x2 + . . .+ xn

n
≥ n

1
x1

+ 1
x2

+ . . .+ 1
xn

.

Problem 5. Let a, b, c be positive real numbers. Prove that:

1

a
+

1

b
+

1

c
≥ 2

(
1

a+ b
+

1

b+ c
+

1

c+ a

)
≥ 9

a+ b+ c
.

Problem 6 (MOP 04). Show that for all positive reals a, b, c(
a+ 2b

a+ 2c

)3

+

(
b+ 2c

b+ 2a

)3

+

(
c+ 2a

c+ 2b

)3

≥ 3.

Problem 7 (IMOmath). Let a1, . . . , an be positive real numbers. Prove that

(1 + a1)(1 + a2) · · · (1 + an) ≤
(
1 +

a21
a2

)
·
(
1 +

a22
a3

)
· · ·

(
1 +

a2n
a1

)
.

Problem 8 (IMO 1999/2). Let n be a fixed integer, with n ≥ 2. Determine the least constant
C such that the inequality

∑
1≤i<j≤n

xixj

(
x2
i + x2

j

)
≤ C

 ∑
1≤i≤n

xi

4

holds for all reals numbers x1, . . . , xn ≥ 0.

Problem 9 (IMO 2000/2). Let x, y, z be positive real numbers such that xyz = 1. Prove that(
x− 1 +

1

y

)(
y − 1 +

1

z

)(
z − 1 +

1

x

)
≤ 1.
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5 Hints

5.1 Hints to exercises

1. Consider the graph and the segment creating a triangle.

2. Consider the derivative of − lnx.

3. Consider the second derivative.

4. Show that the polynomial in the exponent is a convex function.

5. a1 ≥ b1 and an ≤ bn are the only things that can be said.

6. Induct on k for f(a1) + . . .+ f(ak) ≥ g(a1) + . . .+ g(ak)

7. Show that a1+...+ak

k ≥ ak+1+...+an

n−k for all k.

8. cosx is concave on [0, π
2 ].

9. Simplify using A = 1
2ab sin γ.

10. Raise both sides to the nth power and take the logarithm.

11. WLOG a ≥ b ≥ c. Can you prove that a+ b ≥ c+ a ≥ b+ c?

12. Order (2xi − xi+1) and (xi) into decreasing sequences and take the difference of the first
k terms.

13. Note that the inequality is homogeneous and WLOG let a+ b+ c = 1.

14. 1
1+xy = z

z+xyz .

5.2 Hints to problems

1. Divide both sides by np.

2. Note that
∑n

i=1 lnxi =
∑n

i=1 ln
√
xi = 0.

3. n
n+

√
2
= n (1/n)

1+(1/n)
√
2
and (a1 + . . .+ an)/n = 1/n.

4. Take the inverse on both sides.

5. Write all fractions in terms of the function f(x) = 1/x.

6. Introduce S = a+ b+ c.

7. Transform all products and divisions using logarithms and exponentiation.

8. Rewrite the left hand side as a single sum over i containing the sum x1 + . . .+ xn.

9. Let x = a
b , y = b

c , z = c
a . Watch out for negative terms.
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