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0 Notation

• n | a means that n divides a and n ∤ a means that n doesn’t divide a.

• a ≡ b (mod n) means that a and b are congruent modulo n.

• a ⊥ b means that a and b are relatively prime.

• In this text N will denote the set of positive integers and N0 will denote
the set of non-negative integers.

1 Is It Worth It?

Let us imagine that you are studying numbers of the form 11n. You might find
that these numbers all have 1 as their last digit so you conclude that numbers
of the form 11n − 1 always end with a 0, but will they ever have more than one
0 at the end, and how many trailing zeroes could they have? You might try
calculating a few of these numbers and find:

112 − 1 = 120

113 − 1 = 1330

114 − 1 = 14640

These numbers all have 1 trailing zero and it is already becoming a little tedious
to do the arithmetic; you are considering giving up. After all, this question is
not that relevant and when thinking about delving deeper into the problem you
ask yourself:

”Is it worth it?”
If you are going to find something interesting you cannot keep trying larger

and larger n, you must do something a bit more clever. You might realise that
the number of trailing zeroes of a number is equal to the number of times you
can factor out 10 from it. Since 10 = 2 · 5 you want to find the number of times
that 2 and 5 occur in the prime factorisation of 11n − 1. This is a useful insight
that will be crucial for answering the question, but the solution still seems far
away so you might again ask yourself:

”Is it worth it?”
You keep going and you remember that you can factor 11n−1, exactly what

you need!
11n − 1 = (11− 1) ·

(
1 + 11 + 112 + . . .+ 11n−1

)
.

Now you see that the number has 10 as a factor but the other factor looks even
more intimidating than what you started with and once more you ask yourself:

”Is it worth it?”
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2 Building Towards the Lemma

2.1 The p-adic valuation

It is clear that we are interested in the number of times that a prime number
occurs in the prime factorization of a number. To describe this idea succinctly,
we will introduce some terminology and notation.

Definition 2.1. Let a ∈ Z and let p be a prime. Then the p-adic valuation of a,
denoted νp(a), is the number of times that p occurs in the prime factorization
of a. In other words, it is the largest number n ∈ N0 such that pn | a. By
convention we usually let νp(0) = ∞.

Some fundamental properties of the p-adic valuation are provided below:

• νp(a · b) = νp(a) + νp(b)

• νp(a+ b) ≥ min {νp(a), νp(b)}

• νp(a) ≤ logp|a|, for a ̸= 0. (equality when a is a power of p)

Proof. The proofs of these properties are left as an exercise for the reader.

Hint. Rewrite the numbers a and b on the form k · pn.
If we could find ν2(11

n − 1) and ν5(11
n − 1) we would be able to answer

our original question. If possible we would like to be more general than just
looking at the numbers 11 and 1. Therefore, we will now look at the expression
νp(x

n − yn) where p is a prime that divides x − y, but does not divide the
integers x or y. Using the factorization

xn − yn = (x− y) ·
(
xn−1 + xn−2y + . . .+ xyn−2 + yn−1

)
as well as the property νp(a · b) = νp(a) + νp(b), we obtain

νp (x
n − yn) = νp(x− y) + νp

(
xn−1 + xn−2y + . . .+ xyn−2 + yn−1

)
.

The first term is independent of n and simple to evaluate for small values of x
and y. The second term is trickier, however. We will therefore begin by studying
a specific case in which the second term becomes trivial.

2.2 The Case p ∤ n
Lemma 2.1. Let x and y be (not necessarily positive) integers and let p be a
prime number such that p | x−y and p ∤ x, y. If n is a positive integer such that
p ∤ n, then

νp (x
n − yn) = νp(x− y).
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Proof. By the previous observation, this is equivalent to showing that

p ∤ xn−1 + xn−2y + · · ·+ xyn−2 + yn−1.

In fact, since p | x − y ⇔ x ≡ y (mod p) we have that neither n nor x are
divisible by p. Therefore

xn−1 + xn−2y + . . .+ xyn−2 + yn−1︸ ︷︷ ︸
n terms

≡ nxn−1 ̸≡ 0 (mod p)

which implies p ∤ xn−1 + xn−2y + · · ·+ xyn−2 + yn−1 as desired.

With this useful step complete it feels like our effort might soon be worth it.
Now we are ready to investigate the situation when n can be any integer, not
just one relatively prime to p.

2.3 The Case n = p

Now that we know what to do when p ∤ n we want to look at n that are divisible
by p. Let us now consider the simplest such case, when n is equal to p. First
we look at odd primes p:

Lemma 2.2. If p is an odd prime with x and y integers, p ∤ x, y and p | x− y
then:

νp (x
p − yp) = νp(x− y) + 1.

Proof. This is equivalent to showing that p | xp−1+xp−2y+ . . .+xyp−2+ yp−1,
whilst p2 ∤ xp−1 + xp−2y + . . . + xyp−2 + yp−1. Since p | x − y, let y = kp + x
for some integer k. Consider ytxp−1−t modulo p2 using the Binomial Theorem:

ytxp−1−t = (kp+ x)txp−1−t

= xp−1−t ·

(
xt + tkpxt−1 +

����������
p2

t∑
i=2

ki
(
t

i

)
pi−2xt−i

)
≡ xp−1 + tkpxp−2 (mod p2).

Adding together all terms of the form ytxp−1−t for 0 ≤ t ≤ p− 1 gives:

xp−1 + xp−2y + . . .+ xyp−2 + yp−1 =

p−1∑
t=0

ytxp−1−t

≡
p−1∑
t=0

(
xp−1 + tkpxp−2

)
(mod p2)

≡ pxp−1 +
��������
k
(p− 1)p

2
pxp−2 (mod p2)

≡ pxp−1 ̸≡ 0 (mod p2)

Therefore we can conclude both that p | xp−1 + xp−2y+ . . .+ xyp−2 + yp−1 and
that p2 ∤ xp−1 + xp−2y + . . .+ xyp−2 + yp−1. Hence we are done.
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This step was quite difficult, but will soon prove very useful. Now what if
p = 2? They say that 2 is the oddest prime as it is the only one that is even.
Unfortunately the above lemma doesn’t work when p = 2 (can you see why?)
but thankfully there is another lemma for this case, which we see below.

Lemma 2.3. If x, y are odd:

ν2
(
x2 − y2

)
= ν2(x− y) + ν2(x+ y).

Proof. This follows directly from the fact that νp(a · b) = νp(a) + νp(b).

Now we are ready to witness the fruits of our labour by proving the Lifting
the Exponent Lemma, or LTE for short.

3 Lifting the Exponent Lemma

Everything we have done so far has lead us to the Lifting the Exponent lemma.
This lemma will, among other things, help us answer the question at the start
of the paper. It is also very useful in a wide variety of situations and it would
have been a shame had we deemed this endeavor not ”worth it” when we first
started. The lemma has a couple of cases: when the prime p is odd and when
it is even.

3.1 For odd primes

Using lemma 2.3 and a proof by induction we can prove the following:

Theorem 1. If p is an odd prime with x and y integers such that p ∤ x, y and
p | x− y then:

νp(x
n − yn) = νp(x− y) + νp(n).

Proof. Write n = pkm for some non-negative integer k and positive integer
m ⊥ p ⇔ p ∤ m. We will show the theorem by induction on k.

For the base case k = 0, we have that

νp

(
xp0m − yp

0m
)
= νp

(
x1·m − y1·m

)
= νp(x− y) + 0

by Lemma 2.1 as desired.
Next consider the induction step. From the induction hypothesis the theorem

holds when the exponent is pk−1m. Note p | x− y ⇒ p | xp − yp and p ∤ x, y ⇒
p ∤ xp, yp. Therefore we get that

νp

(
xpkm − yp

km
)
= νp

(
(xp)

pk−1m − (yp)
pk−1m

)
= νp (x

p − yp) + (k − 1)

= νp(x− y) + 1 + (k − 1)

with the last step being due to Lemma 2.2. Since 1 + (k − 1) = k = νp(n)
this completes the induction step and therefore the proof.
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3.2 For p = 2

When p = 2 we will get something slightly different. In fact, we usually split the
p = 2 case into two separate theorems depending on the parity of the exponent.
Luckily, when the exponent is odd we can refer back to Lemma 2.1.

Theorem 2. If x and y are odd and n is even then

ν2(x
n − yn) = ν2(x− y) + ν2(x+ y) + ν2(n)− 1.

Proof. This proof will be very similar to the proof of Theorem 1. Write n = 2km
for some positive integers k and m with m odd. We will show the theorem by
induction on k.

For the base case k = 1, note that x, y are odd and therefore so are x2 and
y2. Therefore we get that

ν2

((
x2
)m −

(
y2
)m)

= ν2
(
x2 − y2

)
= ν2(x− y) + ν2(x+ y) + ν2(n)− 1

by Lemma 2.3 as desired.
Next consider the induction step. From the induction hypothesis the theorem

holds when the exponent is 2k−1m. Therefore we get that

ν2

((
x2
)2k−1m −

(
y2
)2k−1m

)
= ν2

(
x2 − y2

)
+ ν2

(
x2 + y2

)
+ ν2

(
2k−1m

)
− 1

= ν2(x− y) + ν2(x+ y)��+1 + ν2(n)��−1− 1

noting that ν2
(
x2 + y2

)
= 1 because x2, y2 ≡ 1 (mod 4), and also ν2(n)− 1 =

ν2
(
2k−1m

)
. This completes the induction step and therefore the proof.

This paper started with a simple question that barely seemed worth study-
ing, but by trying to answer this question and by making generalisations when
possible we were able to prove some very powerful theorems that we would never
have found without curiosity and persistence. The process of proving these the-
orems has also taught us that it is sometimes necessary to look at simpler and
more specific cases before proving a general result. The theorems and lemmas in
this chapter are known collectively as the Lifting The Exponent (LTE) lemma.
This will be discussed further in the next section.

4 Applications

Now we will look at how one can apply the LTE-lemma to solve some problems.
There are four sections below each dealing with different aspects of applying
LTE. Each section includes some examples, some exercise problems and some
comments relating to the different ideas presented.
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4.1 Choosing the prime p

For some problems it is easy to guess that the LTE-lemma may be helpful. Then
the difficulty often lies in figuring out which prime(s) to look at. Consider the
following problem:

Example 4.1. Prove that the number aa−1 − 1 is never square-free1 for all
integers a > 2.

The problem is equivalent to finding a prime which divides aa−1 − 1 twice.
The expression looks very well suited for LTE, but we do not yet know which
prime to consider. So in the rudest way possible suppose we consider any prime
p which divides a− 1. Then if p is odd: νp(a

a−1 − 1) = νp(a− 1) + νp(a− 1) =
2νp(a− 1), which finishes immediately. A complete proof for this example may
look like the one below.

Proof Example 4.1. Since a > 2 there must exist some prime p which divides
a−1. For odd p, the LTE-lemma gives: νp(a

a−1−1) = νp(a−1)+νp(a−1) ≥ 2,
so p2 | aa−1 − 1 as desired. If p = 2 then a − 1 must be even which gives:
ν2(a

a−1 − 1) = ν2(a− 1) + ν2(a+ 1) + ν2(a− 1)− 1 ≥ 2 as desired.

While it worked here, it will often NOT be the case that choosing any random
prime will work. Still, it often is helpful to look at the exponents and bases.
For these next problems choosing suitable primes may require some attention.

Exercise 4.1. Let k be a positive integer. What is the smallest positive integer
n so that 11n − 1 has k trailing zeroes?

Exercise 4.2 (Ireland 1996). Let p be a prime number. Show that 2p + 3p

cannot be a perfect power2.

Exercise 4.3 (Iran 2008). Fix a ∈ N. Suppose 4(an + 1) is a perfect cube for
all n ∈ N. Prove that a = 1.

In the exercises above choosing a relevant prime for LTE may have been a
little tricky, especially for exercise 4.3. If you have not solved exercise 4.3 yet
we encourage you to push on, because it is a very neat problem!

Nevertheless the relevant primes should not be too difficult to find. Indeed,
let us consider a substantially more challenging problem:

Example 4.2. Let k > 1 be an integer. Show that there exists infinitely many
positive integers n such that

n | 1n + 2n + · · ·+ kn.

1An integer n is said to be square-free if there does not exist a positive integer b ̸= 1 such
that b2 | n.

2A perfect power is a natural number that can be expressed as am for integers a,m > 1.
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In these kinds of problems one often falls into the trap of trying to fill all
possible values of n which work. However, this is often not feasible to study and
is unlikely to reveal any coherent patterns. Instead we should restrict ourselves
to only study nice values of n. Nice values could mean anything: squares of
integers, odd multiples of 2023, Fermat primes, etc., but preferably something
that makes the problem easier to analyse. In this example we will see that it is
beneficial to study prime powers.

Proof Example 4.2. Note that either k or k + 1 will be odd, and therefore have
an odd prime divisor p. We will show that taking n = pm will work for all
m ∈ N. Firstly, if k is even then k + 1 is odd. Therefore p | a+ (k + 1− a) for
all a ∈ {1, 2, . . . , k

2}. For p | a ⇒ p | k + 1− a we have

νp (a
n + (k + 1− a)n) ≥ min{νp(an), νp ((k + 1− a)n)} ≥ n = pm > m.

And for p ∤ a ⇒ p ∤ k + 1− a LTE gives that

νp (a
n + (k + 1− a)n) = νp(a+ (k + 1− a)) + νp(n) > νp(n) = νp(p

m) = m.

Considering these two cases together we have that pm | an +(k+1− a)n for all
a ∈ {1, 2, . . . , k

2}. Therefore we have that n | 1n + 2n + · · ·+ kn as desired.
Secondly, if k is odd then we have already concluded that n | 1n+2n+ · · ·+

(k−1)n. Left to note is that p | k which implies that pm | kn since m < pm = n.
Therefore we have that n | 1n + 2n + · · ·+ kn as desired.

Another idea for finding a good prime not mentioned thus far is looking at
the smallest/largest prime factors of some expression. One should also always
test small primes, like 2, 3, 5 and 7, to see if they yield some helpful constraints.

Exercise 4.4. Find all positive integers n such that

2n
2

− nn = 6nn+1 − 1.

4.2 Using LTE

While LTE is a useful tool in and of itself, it is very often combined with other
tools. Some examples of other helpful tools which we will explore in this section
are: Fermat’s Little Theorem, Modulo and Orders3. Other relevant tools not
discussed in this text include Wilsson’s Theorem and Euler’s Theorem.

Example 4.3 (Swedish Training-camp 2023). Let p be a prime. Find all posi-
tive integers n with the following property: if xn − 1 is divisible by p for some
integer x, then xn − 1 is also divisible by p2.

3For some good material regarding orders we would like to recommend: https://static1.
squarespace.com/static/5fe101b108d85d5e817a934a/t/62b4964e8a2c88240860a5bc/

1656002143465/Orders_and_Primitive_Roots_Minerva.pdf
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Since this problem gives a lot of freedom in the choice of x, a good way to
gain intuition will be to try to construct some x such that the condition does
not hold. For this problem one can refer back to Lemma 2.1 which gives that
νp (x

n − 1) = νp(x − 1) if p | x − 1 and p ∤ n. From there it is not difficult to
guess that the answer will be all n divisible by p.

Proof Example 4.3. Assume p ∤ n. Choosing x = p+ 1 gives p = x− 1 | xn − 1,
but by LTE νp(x

n − 1) = νp(x− 1) = 1 which means that p2 ∤ xn − 1.
Assume instead that p | n and let n = pm for some positive integer m. We

must show that the implication holds for all x. By Fermat’s Little Theorem we
have that xn = (xm)

p ≡ xm (mod p). Therefore p | xn − 1 ⇒ p | xm − 1. Now
LTE finishes immediately:

νp (x
n − 1) = νp ((x

m)
p − 1) = νp (x

m − 1) + νp(p) ≥ 1 + 1 = 2.

Exercise 4.5. Let a, n be two positive integers and let p be an odd prime
number such that:

ap ≡ 1 (mod pn).

Prove that
a ≡ 1 (mod pn−1).

Exercise 4.6. Let a, b, c be positive integers such that c | ac − bc. Prove that
c | ac−bc

a−b .

Example 4.4 (IMO 1990 P3). Determine all integers n > 1 such that

2n + 1

n2

is an integer.

Proof Example 4.4. Note that n cannot be even since 2 ∤ 2n + 1. Consider the
smallest prime factor p of n. Note that p | 2n+1 ⇒ 2n ≡ −1 (mod p) ⇒ 4n ≡ 1
(mod p). Therefore ordp(4) | n and ordp(4) | ϕ(p) ⇒ ordp(4) | gcd(n, ϕ(p)) = 1,
with the last step following from that p is the smallest prime factor of n and
therefore also it’s smallest proper factor. This implies ordp(4) = 1 ⇒ 41 ≡ 1
(mod p) ⇒ p = 3. Now write n = 3m. By LTE we now get

ν3 (2
n + 1) = ν3(2 + 1) + ν3(n).

However, we must have 1+ν3(n) = ν3 (2
n + 1) ≥ ν3(n

2) = 2ν3(n), which implies
ν3(n) ≤ 1 ⇒ 3 ∤ m.

Ifm = 1 we can check that the condition holds. Now supposem > 1. We will
then consider the smallest prime factor q dividing m and note that q | 2n +1 =
8m + 1 ⇒ 8m ≡ −1 (mod q) ⇒ 64m ≡ 1 (mod q). Therefore ordq(64) | m
and ordq(64) | ϕ(q) ⇒ ordq(64) | gcd(m,ϕ(q)) = 1, with the last step following
from that q is the smallest prime factor of m and therefore also it’s smallest
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proper factor. This implies ordq(64) = 1 ⇒ 641 ≡ 1 (mod q) ⇒ q | 63 = 32 · 7.
Therefore q = 7 since q | m but 3 ∤ m. However this is impossible as 8m + 1
cannot be divisible by 7 since it is congruent to 2 modulo 7.

In conclusion the only n for which n2 | 2n + 1 is n = 3.

4.3 The case p = 2

It can often be easy to forget that p can be 2. Then the statement of the main
LTE-lemmas are slightly different, and one has to divide into cases based on
if the exponent is even or odd. This section is here to serve as a reminder to
always check if p can be 2, and if so to deal with it separately.

Exercise 4.7. Show that a number with binary representation 111 . . . 1 cannot
be a perfect power.

Exercise 4.8 (Romania TST 2009). Let a, n ≥ 2 be integers, which have the
following property: there exists an integer k ≥ 2, such that n divides (a− 1)k.
Prove that n also divides an−1 + an−2 + · · ·+ a+ 1.

Exercise 4.9. Find all positive integers n such that 2n | 3n − 1.

4.4 Inequalities and Bounding

It may sound surprising at first, but creative use of LTE can lead to some
very powerful inequalities. In fact in recent years problems4 at the highest
level of competition for high-school students, the International Mathematical
Olympiad (IMO), have relied on bounding νp(n!) and νp(x

k − yk) using the

lemma5 vp(n!) =
n−τp(n)

p−1 and LTE respectively.

Example 4.5 (Bulgaria 1997). For some integer n ≥ 2, the number 3n − 2n is
a perfect power of a prime. Prove that n is a prime.

Proof Example 4.5. Assume that n is not prime but 3n − 2n is a power of a
prime. Let this prime be p and the power be pw. Note that w > 0 since
3n − 2n > 1 for n ≥ 2. Therefore p | 3n − 2n. Since neither 2 nor 3 divides
3n − 2n, we can conclude that p ̸= 2, 3.

Since n is composite, we can let n = ab for some positive integer a, b ≥ 2.
Since 3a − 2a | 3ab − 2ab we must have that 3a − 2a is also a power of p. Now
we can apply LTE and notice that

νp
(
(3a)b − (2a)b

)
= νp(3

a − 2a) + νp(b)

⇒ 3ab − 2ab = (3a − 2a) · pνp(b) ≤ (3a − 2a)b

⇒ 3a(b−1) + 3a(b−2)2a + · · ·+ 3a2a(b−2) + 2a(b−1)︸ ︷︷ ︸
sum of b integers greater than 1

≤ b

which is a contradiction. Hence our assumption that n was composite must be
false. Therefore we can conclude that n is a prime as desired.

4See IMO 2022 P5 and IMO 2019 P4.
5Here τp(n) is the digit-sum of n in base p.
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Exercise 4.10. Find all positive integer solutions to the equation

x2009 + y2009 = 7z.

Exercise 4.11. For a prime p, find all positive integers x, y such that

px − yp = 1.

Exercise 4.12. For all odd positive integers n, prove that

n2 | 2n! − 1.

Exercise 4.13 (IMO 2022 P5 Modified). Find all pairs of positive integers a, b
such that

aa = b! + a.

5 Further Reading

There are several mathematical ideas closely related to the notion of p-adic
valuation and the result of the Lifting the Exponent Lemma. Some of these we
see fit to mention below before concluding this text.

Firstly, for completeness sake we should mention that the p-adic valuation
can be extended to the rational numbers. The definition is very straightforward:
let νp(

a
b ) = νp(a) − νp(b). Most properties of the p-adic valuation mentioned

in this text still hold for rational inputs, but some do not. For example the
inequality νp(r) ≤ logp|r| is only universally valid for the integers, excluding
zero. Interestingly the LTE lemma itself holds to some degree. The bases x, y
can be rational, but the exponent n must still be a positive integer. Specifically,
the conditions that p ∤ x, y and p | x− y are reformulated as νp(x) = νp(y) = 0
and νp(x− y) > 0 respectively.

Secondly we should mention two closely related theorems to LTE, namely
Zsigmondy’s Theorem and Catalan’s Conjecture. The second of these is still
called a conjecture because it was first proven as recently as 2002 by Preda
Mihăilescu after being conjectured all the way back in 1844 by Eugène Charles
Catalan. The statements of the two theorems are as follows:

Theorem 3 (Zsigmondy’s Theorem). If a > b > 0 are coprime integers, then
for any integer n, there exists a prime number p that divides an − bn but does
not divide ak − bk for any positive integer k < n, with the following exceptions:

• n = 1 and a− b = 1,
• n = 2 and a+ b is a power of 2,
• n = 6, a = 2 and b = 1.

Theorem 4 (Catalan’s Conjecture). The only solution to the equation

xa − yb = 1

in integers a, b > 1, x, y > 0 is (a, b, x, y) = (2, 3, 3, 2).
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The astute reader may notice that Exercise 4.11. in this text is a special case
of Catalan’s Conjecture. For the interested, we also refer to an elementary proof6

of Zsigmondy’s Theorem using the LTE lemma and cyclotomic polynomials.

6 Hints

Here are some hints for the exercise problems in section 4.

4.1. For a number to have k trailing zeroes, what does that imply about the
number’s prime factorisation?

4.2. A perfect power cannot be divisible by a prime exactly once.

4.3. Consider a prime other than 2 dividing am + 1.

4.4. Prove that n is odd, then apply LTE.

4.5. Use Fermat’s Little Theorem.

4.6. Consider the distinct prime factors of c separately and try to use Fermat’s
Little Theorem.

4.7. A number with a binary representation of 111...1 is one less than a power
of 2.

4.8. The condition says that every prime which divides n also divides a− 1.

4.9. Divide into cases depending on the parity of the exponent n.

4.10. Note that (x41)7
2

+ (y41)7
2

= x2009 + y2009.

4.11. First check p = 2. Then use LTE and the fact that yp + 1 is a perfect
power of p.

4.12. If n ̸= 1, for all primes p | n we have p | 2p−1 − 1 | 2n! − 1 since n > p− 1.

4.13. Divide into cases depending on whether a is prime or composite. Also
note that b! < bb − b for b > 2.

6https://angyansheng.github.io/blog/an-elementary-proof-of-zsigmondys-theorem
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